Waste not, want not? Poultry “feather meal” as another source of antibiotics in feed

The ecology of antibiotic resistance on farms is complicated. Animals receive antibiotic doses in their food and water, for reasons of growth promotion, disease prophylaxis, and treatment. Other chemicals in the environment, such as cleaning products or antimicrobial metals in the feed, may also act as drivers of antibiotic resistance. Antibiotic-resistant organisms may also be present in the environment already, from the air, soil, or manure pits within or near the barns. Ecologically, it’s a mess and makes it more difficult to attribute the evolution and spread of resistance to one particular variable.

A new paper emphasizes just what a mess it really is, and what animals are exposed to in addition to “just” antibiotics. Led by Keeve Nachman at the Johns Hopkins University Center for a Livable Future, his team took a different approach to examining farm exposures, by looking at “feather meal.” What is feather meal, you may ask? I did when I met with Keeve last month at Hopkins as we discussed his research. Well, feathers are one obvious byproduct of chicken slaughtering, and waste not, want not, right? So feathers are processed into meal, which can then be used in a number of ways–among them fertilizer, and as an additive to feed for chickens, pigs, fish, and cattle.

We already knew that chickens receive antibiotics in their food and water supplies, just as other farm animals do. It was also known that some antibiotic residues persisted on chicken feathers–another potential driver of resistance in farm animals. However, Nachman and colleagues wanted to assess what other chemicals may be present in this feed meal besides antibiotics, and also whether those antibiotic residues persisted in the feather meal after processing/treatment of the feathers. As lead author David Love notes:

Why study feather meal? We know that antibiotics are fed to poultry to stimulate growth and to make up for crowded living conditions in poultry houses, but the public does not know what types of drugs are used and in what amounts. It turns out that many of these drugs accumulate in poultry feathers, so by testing feathers we have a non-invasive way of learning about what drugs are actually fed to poultry.

To do this, they examined 12 feather meal samples from the U.S. (n=10) and China (n=2). All 12 samples contained at least one antibiotic residue, and some contained residues of 10 different drugs (both of those were from China). While many of the antibiotics were ones used in poultry farming (or their metabolites), they also found drugs they did not expect. Most significantly, this included residues of fluoroquinolones, which they found in 6 of 10 U.S. feather meal samples. Why is this important? Fluoroquinolone use was banned in U.S. poultry production as of 2005 because of the risk to human health–so where are these residues coming from? The authors make a few suggestions for this:

These findings may suggest that the ban is not being adequately enforced or that other pathways, for example, through use of commodity feed products from livestock industries not covered by the ban, may inadvertently contaminate poultry feed with fluoroquinolones. Furthermore, if feather meal with fluoroquinolone residues is fed back to poultry, this practice could create a cycle of re-exposure to the banned drugs. Unintended antimicrobial contamination of poultry feed may help explain why rates of fluoroquinolone-resistant Campylobacter isolates continue to persist in poultry and commercial poultry meat products half a decade after the ban.

Interestingly, the authors tested whether antibiotic residues at the level they found could influence bacterial growth, and found that they did inhibit growth of wild-type E. coli, but allowed a resistant strain to flourish.

Besides antibiotic residues, a number of other chemicals were also detected, including many I’d never thought to associate with farming. In the U.S. samples, they found caffeine–apparently chickens may be fed coffee pulp and green tea powder, which may account for this finding; acetaminophen (Tylenol), which can be used to treat fevers in poultry just as it can for humans; diphenhydramine (the active ingredient in Benadryl), which apparently is used for anxiety issues in poultry; and norgestimate, a sex hormone. Any kind of health significance to these (either to people or to the animals who are ingesting these via feather meal) is uncertain. In an interview with Nick Kristof in the New York Times, Nachman noted:

“We haven’t found anything that is an immediate health concern,” Nachman added. “But it makes me question how comfortable we are feeding a number of these things to animals that we’re eating. It bewilders me.”

So what we’re seeing here are the presence of antibiotics and other drugs in feather meal, which is spread around as a fertilizer or fed to many species of domestic animals as an additive. It’s difficult to keep up with these additional feed additives–in addition to feather meal, many animals could also receive distiller’s grains in their diet, ethanol by-products which are another potential source of antibiotic residues.

This, my friends, is a clusterfuck.

Though I’ve focused on the U.S. data here, the paper notes that the Chinese samples are relevant as well–while most feather meal used here is domestically produced, we do import some, and about a quarter of what we import is from China, where antibiotics that are restricted or banned in the U.S. may still be in use. Furthermore, farmers may not even know this is in the feed they’re using, as many mixes are proprietary. (And if farmers don’t know, you can imagine how difficult it is for a researcher to determine if this is playing a role in antibiotic resistance or other public health issues on these farms).

Works cited

Love, D., Halden, R., Davis, M., & Nachman, K. (2012). Feather Meal: A Previously Unrecognized Route for Reentry into the Food Supply of Multiple Pharmaceuticals and Personal Care Products (PPCPs) Environmental Science & Technology, 46 (7), 3795-3802 DOI: 10.1021/es203970e