MRSA in pork products: does the “antibiotic-free” label make a difference?

Back in November, I blogged about one of our studies, examining methicillin-resistant Staphylococcus aureus (MRSA) in Iowa meat products. In that post, I mentioned that it was one of two studies we’d finished on the subject. Well, today the second study is out in PLoS ONE (freely available to all). In this study, we focused only on pork products, and included 395 samples from Iowa, Minnesota, and New Jersey. We also looked at not only conventional meats, but also “alternative” meat products. Most of the latter were products labeled “raised without antibiotics” or “raised without antibiotic growth promotants”–in the markets we tested, very few USDA-certified organic products were available unfrozen, and we were looking for fresh meat products.

In our previous paper, we found MRSA on 1.2% of 165 meat samples. In the current study, we found a higher prevalence–6.6% of 395 samples were contaminated with MRSA. (More about the differences in methods between our two studies later). Interestingly, we didn’t find a statistically significant difference in MRSA prevalence on conventional versus alternative pork products–a finding that surprised me, as it contradicts what we’ve found to date looking at the sources of this meat–conventional versus “alternative” pig farms. Other groups have also found differences on-farm versus on-meat: a 2011 study looking at feedlot cattle didn’t find any MRSA in animal samples, though the same group found MRSA in beef products. So, our disparate findings between farms and meat samples are not unheard-of. However, even though our sample size was larger than other U.S. studies to date, it was still fairly small overall–300 conventional and 95 alternative pork samples over a 4-week sampling period from 3 states, so larger multi-state studies are needed to further examine this angle.

It also suggests that we need processing plants and packing companies to work with us to determine where products are being contaminated–because while there may be arguments about the public health importance of MRSA on meats (or lack thereof), it’s very likely that if S. aureus are ending up on meat products, other pathogens are as well.

What does the molecular typing tell us, speaking of contamination source? We carried out analyses on all the MRSA and found that the most common type of MRSA was ST398, the “livestock” strain that we previously found on pig farms in the U.S. We also found two “human” types were common: USA300 (a “community-associated” strain) and USA100 (typically considered a “hospital-associated” strain). In the simplest analysis of these findings, these molecular types (a combination of “human” and “pig” strains) suggests that MRSA on raw pork products may be coming both from farms and from food handlers. However, in real life, it’s not quite so straightforward. USA100 types have also been found in live pigs. So has USA300. As such, the source of contamination and relative contributions of live pigs versus human meat handlers currently isn’t certain.

Within the MRSA strains, we found high levels of antibiotic resistance, similar to what was reported in the recent Waters et al. study. In ours, 76.9% were resistant to two or more antibiotics and 38.5% were resistant to three or more antibiotics tested. (I’ll note that we only had funding to test the MRSA–we weren’t able to do these tests on all the methiciin-susceptible strains).

Did MRSA prevalence increase in the period between our first study (spring 2009) and this one (late summer/fall 2010)? I doubt it. For this paper, we used a different sampling method, adding the samples to a sterile stomacher bag so that the entire sample was immersed in the culture medium; for the first paper we used external swabbing and so likely didn’t capture as many bacteria. This current study more likely represents the “true” MRSA prevalence. But–all isolates were only called as positive/negative, and we didn’t measure the number of bacteria on each piece of meat. So, there theoretically could have been just a few colonies of MRSA on the entire piece of meat, and that would have been called a positive sample, while another meat product covered with hundreds of MRSA would have been put in the same category. Therefore, more subtle differences may exist that we didn’t pick up in this study, but we will examine in other ongoing studies.

So–what’s the take-home here? Don’t assume that any meat product is contamination-free, and always use good food handling/cooking practices when dealing with raw meats. As far as the titular question, well, we’re still hashing that one out.

References

Hanson et al. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa.

Waters et al. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry.

O’Brien et al. MRSA in conventional and alternative retail pork products.

Lin et al. Evidence of multiple virulence subtypes in nosocomial and community-associated MRSA genotypes in companion animals from the upper midwestern and northeastern United States.

Weese et al. The Prevalence of Methicillin-Resistant Staphylococcus aureus Colonization in Feedlot Cattle.

Weese et al. Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products.

MRSA found in Iowa meat

I’ve blogged previously on a few U.S. studies which investigated methicillin-resistant Staphylococcus aureus in raw meat products (including chicken, beef, turkey, and pork). This isn’t just a casual observation as one who eats food–I follow this area closely as we also have done our own pair of food sampling investigations here in Iowa, and will be doing a much larger, USDA-funded investigation of the issue over the next 5 years.

Let me sum up where the field currently stands. There have been a number of studies looking at S. aureus on raw meat products, carried out both here in North American and in Europe. In a study from the Netherlands, a large percentage of samples were found to harbor MRSA (11.9% overall, but it varied by meat type–35.3% of turkey samples were positive, for example). Most of there were a type called ST398, the “livestock” strain. This was also found in one Canadian study (5.5% MRSA prevalence, and 32% of those were ST398), but no ST398 were found in a second study by the same group.

Here in the US, prevalence has found to be lower than in that Dutch study (from no MRSA found, up to 5% of samples positive). Furthermore, in the previously-published studies, no MRSA ST398 was found in samples of US meat, though this paper did find plenty of methicillin-sensitive S. aureus (MSSA) ST398 strains. Instead, most of the MRSA isolates have been seemingly “human” MRSA types, like USA100 (a common hospital-associated strain) and USA300 (a leading community-acquired strain).

Why am I rehashing all of this? We have a new paper out examining S. aureus in Iowa meats–and did find for the first time MRSA ST398, as well as MRSA USA300 and MSSA strains including both presumptive “human” and “animal” types. This was just a pilot study and numbers are still fairly small, but enough to say that yes, this is here in the heart of flyover country as well as in the other areas already examined.

As I mentioned, this is one of two studies we’ve completed examining MRSA on meat; the other is still under review and much more controversial, but I will share that as soon as I’m able. And with the USDA grant, we’ll be working on better understanding the role that contaminated meats play in the epidemiology and transmission of S. aureus for the next several years, so expect to see more posts on this topic…

References

Hanson et al. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J Infect Public Health. 2011 Sep;4(4):169-74. Link.

Waters et al. Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry . Clin Infect Dis. 2011 May;52(10):1227-30. Link.

Weese et al. Methicillin-resistant Staphylococcus aureus (MRSA) contamination of retail pork. Can Vet J. 2010 July; 51(7): 749-752. Link.

De Boer et al. Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol. 2009 Aug 31;134(1-2):52-6. Link.

Pu et al. Isolation and characterization of methicillin-resistant Staphylococcus aureus strains from Louisiana retail meats. Appl Environ Microbiol. 2009 Jan;75(1):265-7. Link.

Bhargava et al. Methicillin-resistant Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerg Infect Dis. 2011 Jun;17(6):1135-7. Link.